Gaussian bounds for the Dirichlet heat kernel

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian Upper Bounds for the Heat Kernel on Arbitrary Manifolds

The history of the heat kernel Gaussian estimates started with the works of Nash [25] and Aronson [2] where the double-sided Gaussian estimates were obtained for the heat kernel of a uniformly parabolic equation in IR in a divergence form (see also [15] for improvement of the original Nash’s argument and [26] for a consistent account of the Aronson’s results and related topics). In particular, ...

متن کامل

Heat Kernel Estimates for Dirichlet Fractional Laplacian

In this paper, we consider the fractional Laplacian −(−∆)α/2 on an open subset in R with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such Dirichlet fractional Laplacian in C open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C open set. Our results are the first sharp two-sided ...

متن کامل

Dirichlet Heat Kernel Estimates for Δ +δ

For d ≥ 1 and 0 < β < α < 2, consider a family of pseudo differential operators {Δ + aΔ; a ∈ [0,1]} on R that evolves continuously from Δ to Δ + Δ. It gives arise to a family of Lévy processes {X, a ∈ [0,1]} on R, where each X is the independent sum of a symmetric α-stable process and a symmetric β-stable process with weight a. For any C open set D ⊂R, we establish explicit sharp two-sided esti...

متن کامل

The Solution of the Kato Problem for Divergence Form Elliptic Operators with Gaussian Heat Kernel Bounds

We solve the Kato problem for divergence form elliptic operators whose heat kernels satisfy a pointwise Gaussian upper bound. More precisely, given the Gaussian hypothesis, we establish that the domain of the square root of a complex uniformly elliptic operator L = −div(A∇) with bounded measurable coefficients in Rn is the Sobolev space H1(Rn) in any dimension with the estimate ‖ √ Lf‖2 ∼ ‖∇f‖2...

متن کامل

Dirichlet Heat Kernel Estimates for Subordinate Brownian Motions with Gaussian Components

In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels, in C open sets D in R, of a large class of subordinate Brownian motions with Gaussian components. When D is bounded, our sharp two-sided Dirichlet heat kernel estimates hold for all t > 0. Integrating the heat kernel estimates with respect to the time variable t, we obtain sharp two-sided estimates for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1990

ISSN: 0022-1236

DOI: 10.1016/0022-1236(90)90106-u